Schlögl | Chemical Energy Storage | E-Book | sack.de
E-Book

E-Book, Englisch, 499 Seiten

Reihe: De Gruyter Textbook

Schlögl Chemical Energy Storage

E-Book, Englisch, 499 Seiten

Reihe: De Gruyter Textbook

ISBN: 978-3-11-026632-0
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



The use of regenerative energy in many primary forms leads to the necessity to store grid dimensions for maintaining continuous supply and enabling the replacement of fossil fuel systems. Chemical energy storage is one of the possibilities besides mechano-thermal and biological systems. This work starts with the more general aspects of chemical energy storage in the context of the geosphere and evolves to dealing with aspects of electrochemistry, catalysis, synthesis of catalysts, functional analysis of catalytic processes and with the interface between electrochemistry and heterogeneous catalysis. Top-notch experts provide a sound, practical, hands-on insight into the present status of energy conversion aimed primarily at the young emerging research front.
Schlögl Chemical Energy Storage jetzt bestellen!

Zielgruppe


Chemists, Materials Scientists, Physicists, Chemical Engineers, Biotechnologysts, Students; Academic Libraries

Weitere Infos & Material


1;Author Index;15
2;1.1 The Solar Refinery;21
2.1;1.1.1 Introduction;21
2.2;1.1.2 The Role of Chemistry in the Energy Challenge;25
2.3;1.1.3 Chemical Reactions and Catalysis;27
2.4;1.1.4 The Design of Catalysts and Processes;36
2.5;1.1.5 The Biological Origin of Our Present Energy System;37
2.6;1.1.6 Chemical Energy Storage: One Long-Term Solution;40
2.7;1.1.7 References;50
3;1.2 Energy Storage Strategies;55
3.1;1.2.1 Introduction;55
3.2;1.2.2 General Considerations;55
3.3;1.2.3 Heat (Cold) Storage;57
3.4;1.2.4 Grid-Scale Storage of Electrical Energy;59
3.4.1;1.2.4.1 Storage on the Transmission Grid Scale;60
3.4.2;1.2.4.2 Storage on Distribution and Medium-Voltage Grid Scale;63
3.5;1.2.5 Energy Storage for Mobile Applications;64
3.5.1;1.2.5.1 Chemical Compounds;65
3.5.2;1.2.5.2 Traction Batteries;66
3.6;1.2.6 Systems Considerations;67
4;1.3 Energy and Society: A Practical Guide;69
4.1;1.3.1 Notes;77
4.2;1.3.2 References;77
5;2.1 Biofuels Derived from Renewable Feedstocks;79
5.1;2.1.1 Introduction;79
5.2;2.1.2 Sources of Biomass;79
5.3;2.1.3 Lignocellulose as Feedstock;82
5.4;2.1.4 Bioethanol as Sustainable Biofuel;83
5.5;2.1.5 Biodiesel as Potential Biofuel;86
5.6;2.1.6 Production of Biofuel via Chemical Transformations of Lignocellulose;88
5.7;2.1.7 Controlled Transformations of Carbohydrates into Hydrocarbon Fuels;92
5.8;2.1.8 Controlled Transformations of Carbohydrates into Novel Biofuels;96
5.8.1;2.1.8.1 Transformations Based on LA;97
5.8.2;2.1.8.2 Biofuel Compounds Based on 5-HMF;99
5.9;2.1.9 Controlled Transformations of Lignin into Potential Fuel Compounds;101
5.10;2.1.10 Summary;102
5.11;2.1.11 Acknowledgment;102
5.12;2.1.12 References;102
6;2.2 Biomass Conversion to Chemicals;107
6.1;2.2.1 Introduction;107
6.2;2.2.2 Classification of Biomass;108
6.2.1;2.2.2.1 Lignocellulose;109
6.2.2;2.2.2.2 Lipids;114
6.2.3;2.2.2.3 Proteins;118
6.3;2.2.3 Selected Key Chemicals;118
6.3.1;2.2.3.1 Cellulose;118
6.3.2;2.2.3.2 Glycerol;119
6.4;2.2.4 Technologies and Requirements for Chemical Production from Biomass;123
6.5;2.2.5 Economic Considerations;124
6.6;2.2.6 Outlook;125
6.7;2.2.7 References;125
7;2.3 Thermal Conversion of Biomass;129
7.1;2.3.1 Torrefaction;132
7.2;2.3.2 Pyrolysis;132
7.2.1;2.3.2.1 Introduction;132
7.2.2;2.3.2.2 Pyrolysis Reactors;133
7.2.3;2.3.2.3 Biomass;134
7.2.4;2.3.2.4 Composition of Bio-Oil;134
7.2.5;2.3.2.5 Utilization of Bio-Oil;135
7.2.6;2.3.2.6 Upgrading of Bio-Oil;135
7.3;2.3.3 Gasification;136
7.3.1;2.3.3.1 Introduction;136
7.3.2;2.3.3.2 Gasification Reactors;137
7.3.3;2.3.3.3 Energy in Gasification;138
7.4;2.3.4 Combustion;138
7.4.1;2.3.4.1 Introduction;138
7.4.2;2.3.4.2 Energy in Combustion;139
7.4.3;2.3.4.3 Co-combustion;139
7.5;2.3.5 Summary;140
7.6;2.3.6 References;141
8;2.4 Biomass to Mineralized Carbon: Energy Generation and/or Carbon Sequestration;145
8.1;2.4.1 Introduction;145
8.2;2.4.2 HTC;146
8.2.1;2.4.2.1 HTC of Biomass Waste for Environmentally Friendly Carbon Sequestration;146
8.2.2;2.4.2.2 HTC for “Carbon-Negative Materials”;147
8.3;2.4.3 Mineralized Biomass as Energy Carrier;149
8.3.1;2.4.3.1 “Biocoal” and Its Comparison to Other Biofuels, Biogas and Bioethanol;149
8.3.2;2.4.3.2 Carbon Fuel Cells;152
8.4;2.4.4 Discussion and Conclusion;153
8.5;2.4.5 References;153
9;3.1 Electrochemical Concepts: A Practical Guide;155
9.1;3.1.1 Introduction;155
9.2;3.1.2 Electrodes in Electrolytes;157
9.3;3.1.3 Energetics of Electrode Reactions;158
9.4;3.1.4 The Electrochemical Cell;160
9.4.1;3.1.4.1 The Concept;160
9.4.2;3.1.4.2 Chemical and Electric Energy;162
9.4.3;3.1.4.3 The Maximum Electric Energy Produced and the Equilibrium Cell Voltage;164
9.5;3.1.5 Concentration Dependence of E: The Nernst Equation;165
9.5.1;3.1.5.1 The Nernst Equation;165
9.5.2;3.1.5.2 Concentration Cells;167
9.6;3.1.6 The Temperature Dependence of the Equilibrium Cell Voltage, E;168
9.7;3.1.7 Conclusion;168
9.8;3.1.8 Acknowledgment;169
9.9;3.1.9 References;170
10;3.2 Water-Splitting Conceptual Approach;171
10.1;3.2.1 Introduction;171
10.2;3.2.2 Fundamentals;171
10.3;3.2.3 Standard (Reversible) Hydrogen Electrode;172
10.4;3.2.4 The Cathode Half-Cell Reaction;173
10.5;3.2.5 The Anode Half-Cell Reaction;174
10.5.1;3.2.5.1 Free Energy Diagram;175
10.5.2;3.2.5.2 Tafel Equation and .GOER;176
10.5.3;3.2.5.3 Scaling Relations;178
10.5.4;3.2.5.4 Universal Scaling and Trends in Activity;179
10.6;3.2.6 Conclusion;181
10.7;3.2.7 References;181
11;3.3 Fuel Cells;183
11.1;3.3.1 What Is a Fuel Cell?;184
11.2;3.3.2 Components of a Fuel Cell;185
11.3;3.3.3 Performance Characteristics of a Fuel Cell;190
11.4;3.3.4 The Electrocatalysis of Oxygen Reduction at Fuel Cell Cathodes;193
11.4.1;3.3.4.1 Understanding the Electrode Potential Dependence of the ORR;193
11.4.2;3.3.4.2 Understanding and Predicting Trends in ORR Activity on Transition-Metal Catalysts;194
11.4.3;3.3.4.3 Nanostructured Pt Core-Shell Electrocatalysts for the ORR;197
11.4.4;3.3.4.4 Noble-Metal-Free ORR PEMFC Electrocatalysts;202
11.5;3.3.5 Conclusions;202
11.6;3.3.6 Acknowledgments;203
11.7;3.3.7 References;203
12;3.4 Molecular Concepts of Water Splitting: Nature’s Approach;205
12.1;3.4.1 Introduction;205
12.2;3.4.2 Water Oxidation;207
12.2.1;3.4.2.1 PSII;207
12.2.2;3.4.2.2 Geometric Structure of the WOC;210
12.2.3;3.4.2.3 Electronic Structure of the WOC;212
12.2.4;3.4.2.4 Function of the WOC;214
12.2.5;3.4.2.5 Suggested Mechanisms of O-O Bond Formation;215
12.2.6;3.4.2.6 Summary: Principles of Photosynthetic Water Splitting;217
12.2.7;3.4.2.7 Current Water-Splitting Catalysts;218
12.3;3.4.3 Hydrogen Production and Conversion;219
12.3.1;3.4.3.1 Classification of Hydrogenases;220
12.3.2;3.4.3.2 Structure of [NiFe] and [FeFe] Hydrogenases;220
12.3.3;3.4.3.3 Intermediate States and Reaction Mechanisms;223
12.3.4;3.4.3.4 Oxygen Sensitivity and Tolerance;229
12.3.5;3.4.3.5 Design Principles of Hydrogenases;230
12.3.6;3.4.3.6 Molecular Catalysts for H2 Conversion and Production;231
12.4;3.4.4 Conclusions;233
12.5;3.4.5 Acknowledgments;234
12.6;3.4.6 Notes;234
12.7;3.4.7 References;235
13;3.5 Batteries: Concepts and Systems;245
13.1;3.5.1 Introduction;245
13.2;3.5.2 Secondary Battery Systems;248
13.3;3.5.3 Lithium Batteries;252
13.4;3.5.4 Thermodynamics of Electrochemical Energy Storage;256
13.5;3.5.5 Kinetics of Energy Storage;259
13.6;3.5.6 Materials Optimization: Adjusting Screws;260
13.7;3.5.7 Outlook;264
13.8;3.5.8 Acknowledgments;264
13.9;3.5.9 Note;265
13.10;3.5.10 References;265
14;4.1 Chemical Kinetics: A Practical Guide;269
14.1;4.1.1 Theory;269
14.1.1;4.1.1.1 Introduction;269
14.1.2;4.1.1.2 Course of a Catalytic Reaction;269
14.1.3;4.1.1.3 Reaction Kinetics;271
14.2;4.1.2 Practical Aspects;278
14.2.1;4.1.2.1 Laboratory Reactors;278
14.2.2;4.1.2.2 Preliminary Tests;278
14.2.3;4.1.2.3 Comparative Studies;279
14.2.4;4.1.2.4 Development of Kinetic Models;280
14.3;4.1.3 Examples;284
14.3.1;4.1.3.1 Oxidative Coupling of Methane;284
14.3.2;4.1.3.2 Decomposition of Ammonia;287
14.3.3;4.1.3.3 Slurry Reaction;290
14.4;4.1.4 Notes;293
14.5;4.1.5 Acknowledgment;294
14.6;4.1.6 Abbreviations;294
14.7;4.1.7 References;295
15;4.2 Synthesis of Solid Catalysts;297
15.1;4.2.1 Macroscopic Catalyst Bodies;300
15.2;4.2.2 The Active Phase;305
15.3;4.2.3 Dispersed Surface Species;316
15.4;4.2.4 Final Remarks;320
15.5;4.2.5 Acknowledgments;321
15.6;4.2.6 References;321
16;4.3 In situ Analysis of Heterogeneous Catalysts in Chemical Energy Conversion;331
16.1;4.3.1 Setting the Scene for Catalyst Characterization in Energy-Related Catalysis and Energy Storage;331
16.2;4.3.2 The Bench of Complementary Characterization Methods;332
16.3;4.3.3 Importance of In Situ Studies;334
16.4;4.3.4 In Situ Cell Design: A Challenge between Engineering and Spectroscopy for Dynamic Experiments and Structure Performance Relationships;336
16.5;4.3.5 Case Studies in Gas Phase, Liquid Phase, High Pressure, and Other Demanding Reaction Conditions;338
16.6;4.3.6 Watching Ensembles and Reactors at Work: Spatially Resolved Studies;341
16.7;4.3.7 Conclusions and Outlook;343
16.8;4.3.8 Acknowledgment;344
16.9;4.3.9 References;344
17;4.4 Model Systems in Catalysis for Energy Economy;349
17.1;4.4.1 Introduction;349
17.2;4.4.2 First Case Study: Controlling Nanoparticle Shapes on Nondoped and Doped Oxide Supports;351
17.3;4.4.3 Second Case Study: Preparation of Oxide-Supported Palladium Model Catalysts by Pd Deposition from Solution;356
17.4;4.4.4 Third Case Study: Strong Metal/Support Interaction Effects;360
17.5;4.4.5 Fourth Case Study: Photochemistry at Nanoparticles;364
17.6;4.4.6 Synopsis;368
17.7;4.4.7 References;368
18;4.5 Challenges in Molecular Energy Research;373
18.1;4.5.1 Introduction;373
18.2;4.5.2 Modern Spectroscopy and Quantum Chemistry as a Means to Decipher Reaction Mechanisms;375
18.3;4.5.3 Fundamental Chemistry of Energy Conversion;377
18.3.1;4.5.3.1 Hydrogen Production;377
18.3.2;4.5.3.2 Water Oxidation;380
18.3.3;4.5.3.3 Oxygen Activation;384
18.3.4;4.5.3.4 Methane Oxidation;388
18.3.5;4.5.3.5 Conversion of Dinitrogen to Ammonia;390
18.4;4.5.4 Summary and Outlook;392
18.5;4.5.5 Acknowledgments;393
18.6;4.5.6 References;393
19;5.1 Photoelectrochemical CO2 Activation toward Artificial Leaves;399
19.1;5.1.1 Introduction;399
19.2;5.1.2 Artificial Leaves and PEC CO2 Activation;400
19.3;5.1.3 Fundamentals of Water and CO2 Electrolysis;402
19.4;5.1.4 Designing the Electrocatalytic Cathode for CO2 Reduction;408
19.5;5.1.5 Designing the Photoanode;411
19.6;5.1.6 PEC Cells for CO2 Conversion;415
19.7;5.1.7 Conclusions;417
19.8;5.1.8 References;418
20;5.2 Thermochemical CO2 Activation;421
20.1;5.2.1 Introduction;421
20.2;5.2.2 General Kinetic and Thermodynamic Considerations;422
20.3;5.2.3 Solarthermal Cycles;423
20.3.1;5.2.3.1 General Principles;423
20.3.2;5.2.3.2 Examples;428
20.4;5.2.4 Dry Reforming of Methane;431
20.5;5.2.5 Summary;431
20.6;5.2.6 References;431
21;5.3 Methanol Chemistry;433
21.1;5.3.1 Why Methanol?;433
21.2;5.3.2 Introduction to Methanol Synthesis and Steam Reforming;435
21.3;5.3.3 Today’s Industrial Methanol Synthesis;437
21.4;5.3.4 The Reaction Mechanism of Methanol Synthesis;439
21.5;5.3.5 Methanol Synthesis from CO2: Thermodynamic and Kinetic Considerations;442
21.6;5.3.6 Cu/ZnO-Based Methanol Synthesis Catalysts;446
21.7;5.3.7 Methanol Steam Reforming (MSR)2;450
21.8;5.3.8 Challenges and Perspectives in Catalyst and Process Development for Energy-Related Application of Methanol;453
21.9;5.3.9 Notes;455
21.10;5.3.10 References;455
22;5.4 Synthesis Gas to Hydrogen, Methanol, and Synthetic Fuels;463
22.1;5.4.1 Introduction;463
22.2;5.4.2 Production of Synthesis Gas;463
22.3;5.4.3 Applications of Synthesis Gas: H2 and Methanol;465
22.3.1;5.4.3.1 Syngas to Hydrogen: The WGS Reaction;465
22.3.2;5.4.3.2 Syngas to Methanol;466
22.4;5.4.4 Syngas to Synthetic Fuels: The Fischer-Tropsch Synthesis;466
22.4.1;5.4.4.1 Chemistry and Catalysts;467
22.5;5.4.5 References;475
23;Index;479


Robert Schlögl, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.